Comparison of Nonuniform Optimal Quantizer Designs for Speech Coding With Adaptive Critics and Particle Swarm

Abstract
This paper presents the design of a companding nonuniform optimal scalar quantizer for speech coding. The quantizer is designed using two neural networks to perform the nonlinear transformation. These neural networks are used in the front and back ends of a uniform quantizer. Two approaches are presented in this paper namely adaptive critic designs and particle swarm optimization, aiming to maximize the signal-to-noise ratio. The comparison of these optimal quantizer designs over a bit-rate range of 3-6 is presented. The perceptual quality of the coding is evaluated by the International Telecommunication Union's Perceptual Evaluation of Speech Quality standard

This publication has 6 references indexed in Scilit: