Detection of Geothermal Phosphite Using High-Performance Liquid Chromatography

Abstract
Little is known about the prebiotic mechanisms that initiated the bioavailability of phosphorus, an element essential to life. A better understanding of phosphorus speciation in modern earth environments representative of early earth may help to elucidate the origins of bioavailable phosphorus. This paper presents the first quantitative measurements of phosphite in a pristine geothermal pool representative of early earth. Phosphite and phosphate were initially identified and quantified in geothermal pool and stream samples at Hot Creek Gorge near Mammoth Lakes, California, using suppressed conductivity ion chromatography. Results confirmed the presence of 0.06 ± 0.02 μM of phosphite and 0.05 ± 0.01 μM of phosphate in a geothermal pool. In the stream, phosphite concentrations were below detection limit (0.04 μM) and phosphate was measured at 1.06 ± 0.36 μM. The presence of phosphite in the geothermal pool was confirmed using both chemical oxidation and ion chromatography/mass spectrometry.