Functional Evaluation of the Endotics System, a New Disposable Self-Propelled Robotic Colonoscope: in vitro tests and clinical trial

Abstract
Currently, the best method for CRC screening is colonoscopy, which ideally (where possible) is performed under partial or deep sedation. This study aims to evaluate the efficacy of the Endotics System, a new robotic device composed of a workstation and a disposable probe, in performing accurate and well-tolerated colonoscopies. This new system could also be considered a precursor of other innovating vectors for atraumatic locomotion through natural orifices such as the bowel. The flexible probe adapts its shape to the complex contours of the colon, thereby exerting low strenuous forces during its movement. These novel characteristics allow for a painless and safe colonoscopy, thus eliminating all major associated risks such as infection, cardiopulmonary complications and colon perforation. An experimental study was devised to investigate stress pattern differences between traditional and robotic colonoscopy, in which 40 enrolled patients underwent both robotic and standard colonoscopy within the same day. The stress pattern related to robotic colonoscopy was 90% lower than that of standard colonoscopy. Additionally, the robotic colonoscopy demonstrated a higher diagnostic accuracy, since, due to the lower insufflation rate, it was able to visualize small polyps and angiodysplasias not seen during the standard colonoscopy. All patients rated the robotic colonoscopy as virtually painless com-pared to the standard colonoscopy, ranking pain and discomfort as 0.9 and 1.1 respectively, on a scale of 0 to 10, versus 6.9 and 6.8 respectively for the standard device. The new Endotics System demonstrates efficacy in the diagnosis of colonic pathologies using a procedure nearly completely devoid of pain. Therefore, this system can also be looked upon as the first step toward developing and implementing colonoscopy with atraumatic locomotion through the bowel while maintaining a high level of diagnostic accuracy.