Antigen sensitization modulates alveolar macrophage functions in an asthma model

Abstract
We have previously demonstrated that adoptive transfer of alveolar macrophages from allergy-resistant rats to alveolar macrophage-depleted allergic rats prevents airway hyperresponsiveness development, suggesting an important role for alveolar macrophages in asthma pathogenesis. Given that ovalbumin sensitization can modulate alveolar macrophage cytokine production, we investigated the role of sensitized and unsensitized alveolar macrophages in an asthma model. Alveolar macrophages from unsensitized or sensitized Brown Norway rats were transferred to alveolar macrophage-depleted sensitized rats 24 h before allergen challenge. Airway responsiveness to methacholine and airway inflammation were measured the following day. Methacholine concentration needed to increase lung resistance by 200% was significantly higher in alveolar macrophage-depleted sensitized rats that received unsensitized alveolar macrophages compared with alveolar macrophage-depleted sensitized rats that received sensitized alveolar macrophages. Tumor necrosis factor levels in bronchoalveolar lavage fluid of sensitized rats that received unsensitized alveolar macrophages were significantly lower compared with rats that received sensitized alveolar macrophages. Interestingly, alveolar macrophages of unsensitized animals showed higher phagocytosis activity compared with alveolar macrophages of sensitized rats, suggesting that sensitization modulates alveolar macrophage phagocytosis function. Our data suggest an important role of allergen sensitization on alveolar macrophage function in asthma pathogenesis.