Performance evaluation of Motion-JPEG2000 in comparison with H.264/AVC operated in pure intracoding mode

Abstract
Recently, two new international image and video coding standards have been released: the wavelet-based JPEG2000 standard designed basically for compressing still images, and H.264/AVC, the newest generic standard for video coding. As part of the JPEG2000 suite, Motion-JPEG2000 extends JPEG2000 to a range of applications originally associated with a pure video coding standard like H.264/AVC. However, currently little is known about the relative performance of Motion-JPEG2000 and H.264/AVC in terms of coding efficiency on their overlapping domain of target applications requiring the random access of individual pictures. In this paper, we report on a comparative study of the rate-distortion performance of Motion-JPEG2000 and H.264/AVC using a representative set of video material. Our experimental coding results indicate that H.264/AVC performs surprisingly well on individually coded pictures in comparison to the highly sophisticated still image compression technology of JPEG2000. In addition to the rate-distortion analysis, we also provide a brief comparison of the evaluated coding algorithms in terms of complexity and functionality.