Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient

Abstract
A derivation is given of the effect of a time‐dependent magnetic field gradient on the spin‐echo experiment, particularly in the presence of spin diffusion. There are several reasons for preferring certain kinds of time‐dependent magnetic field gradients to the more usual steady gradient. If the gradient is reduced during the rf pulses, H1 need not be particularly large; if the gradient is small at the time of the echo, the echo will be broad and its amplitude easy to measure. Both of these relaxations of restrictions on the measurement of diffusion coefficients by the spin‐echo technique serve to extend its range of applicability. Furthermore, a pulsed gradient can be recommended when it is critical to define the precise time period over which diffusion is being measured. The theoretical expression derived has been verified experimentally for several choices of time dependent magnetic field gradient. An apparatus is described suitable for the production of pulsed gradients with amplitudes as large as 100 G cm−1. The diffusion coefficient of dry glycerol at 26°±1°C has been found to be (2.5±0.2)×10−8 cm2 sec−1, a value smaller than can ordinarily be measured by the steady gradient method.

This publication has 13 references indexed in Scilit: