Freewheel Running Prevents Learned Helplessness/Behavioral Depression: Role of Dorsal Raphe Serotonergic Neurons

Abstract
Serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) are implicated in mediating learned helplessness (LH) behaviors, such as poor escape responding and expression of exaggerated conditioned fear, induced by acute exposure to uncontrollable stress. DRN 5-HT neurons are hyperactive during uncontrollable stress, resulting in desensitization of 5-HT type 1A (5-HT1A) inhibitory autoreceptors in the DRN. 5-HT1A autoreceptor downregulation is thought to induce transient sensitization of DRN 5-HT neurons, resulting in excessive 5-HT activity in brain areas that control the expression of learned helplessness behaviors. Habitual physical activity has antidepressant/anxiolytic properties and results in dramatic alterations in physiological stress responses, but the neurochemical mediators of these effects are unknown. The current study determined the effects of 6 weeks of voluntary freewheel running on LH behaviors, uncontrollable stress-induced activity of DRN 5-HT neurons, and basal expression of DRN 5-HT1A autoreceptor mRNA. Freewheel running prevented the shuttle box escape deficit and the exaggerated conditioned fear that is induced by uncontrollable tail shock in sedentary rats. Furthermore, double c-Fos/5-HT immunohistochemistry revealed that physical activity attenuated tail shock-induced activity of 5-HT neurons in the rostral–mid DRN. Six weeks of freewheel running also resulted in a basal increase in 5-HT1A inhibitory autoreceptor mRNA in the rostral–mid DRN. Results suggest that freewheel running prevents behavioral depression/LH and attenuates DRN 5-HT neural activity during uncontrollable stress. An increase in 5-HT1A inhibitory autoreceptor expression may contribute to the attenuation of DRN 5-HT activity and the prevention of LH in physically active rats.