Do horizontal propulsive forces influence the nonlinear structure of locomotion?

Abstract
Several investigations have suggested that changes in the nonlinear gait dynamics are related to the neural control of locomotion. However, no investigations have provided insight on how neural control of the locomotive pattern may be directly reflected in changes in the nonlinear gait dynamics. Our simulations with a passive dynamic walking model predicted that toe-off impulses that assist the forward motion of the center of mass influence the nonlinear gait dynamics. Here we tested this prediction in humans as they walked on the treadmill while the forward progression of the center of mass was assisted by a custom built mechanical horizontal actuator.