Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

Abstract
The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species. Biodiversity has been proposed as a major ecological factor determining disease prevalence. However, the relationship between biodiversity and disease risk remains underexplored. Few studies focus on host-virus systems and, particularly on plant viruses. To address this subject the prevalence of virus infection and disease symptoms was monitored in wild-pepper (chiltepin) populations under different levels of human management. For these populations, species diversity, host genetic diversity and host plant density were determined. Higher levels of human management resulted in increased disease and virus infection risk, which was associated with decreased habitat species diversity and host genetic diversity, and with increased host plant density. More specifically, for wild chiltepin populations, species diversity of the habitat was the primary predictor of disease risk; and host genetic diversity was the primary predictor in managed populations, with host density being generally a poorer predictor of disease risk. These results support a dilution effect of biodiversity on disease risk, and underline the relevance of different ecological factors in determining disease risk in wild and in human-managed habitats.