Molecular Logic of 11-cis-Retinoid Biosynthesis in a Cone-Dominated Species

Abstract
The biochemical pathway to visual chromophore biosynthesis in rod-dominated animals involves minimally a two component system in which all-trans-retinyl esters, generated by the action of lecithin retinol acyltransferase (LRAT) on vitamin A, are processed into 11-cis-retinol by isomerohydrolase. Possible differences in retinoid metabolism in cone-dominated animals have been noted in the literature, so it was of interest to explore whether these differences are tangential or fundamental. Central to this issue is whether cone-dominated animals use an isomerohydrolase (IMH)-based mechanism in the predominant pathway to 11-cis-retinoids. Here, it is shown that all-trans-retinyl esters (tREs) are the direct precursors of 11-cis-retinol formation in chicken retinyl pigment epithelium/retina preparations. This conclusion is based on at least three avenues of evidence. First, reagents that block tRE synthesis from vitamin A also block 11-cis-retinol synthesis. Second, pulse-chase experiments also establish that tREs are the precursors to 11-cis-retinol. Finally, 11-cis-retinyl-bromoacetate, a known affinity-labeling agent of isomerohydrolase, also blocks chromophore biosynthesis in the cone system.