Scanning quantum decoherence microscopy

Abstract
The use of qubits as sensitive magnetometers has been studied theoretically and recent demonstrated experimentally. In this paper we propose a generalisation of this concept, where a scanning two-state quantum system is used to probe the subtle effects of decoherence (as well as its surrounding electromagnetic environment). Mapping both the Hamiltonian and decoherence properties of a qubit simultaneously, provides a unique image of the magnetic (or electric) field properties at the nanoscale. The resulting images are sensitive to the temporal as well as spatial variation in the fields created by the sample. As an example we theoretically study two applications of this technology; one from condensed matter physics, the other biophysics. The individual components required to realise the simplest version of this device (characterisation and measurement of qubits, nanoscale positioning) have already been demonstrated experimentally.