Phylogenetic analysis of sexual systems in Inuleae (Asteraceae)

Abstract
From an ancestor with bisexual flowers, plants with unisexual flowers, or even unisexual individuals have evolved in different lineages of angiosperms. The Asteraceae tribe Inuleae includes hermaphroditic, monoecious, dioecious, and gynomonoecious species. Gynomonoecy, the sexual system in which female and bisexual flowers occur on the same plant, is prevalent in the Asteraceae. We inferred one large gene phylogeny (ndhF) and two supertrees to investigate whether gynomonoecy was a stage in the evolution from hermaphroditism to monoecy. We identified transitions in sexual system evolution using the stochastic character mapping method. From gynomonoecious ancestors, both hermaphroditic and monoecious descendants have evolved. Gynomonoecy was not restricted to a stage in the evolution toward monoecy because the number of transitions and the rate of change from monoecy to gynomonoecy were much higher than the opposite. We also investigated one hypothesized association among female flowers and the development of a petaloid ray as an explanation of gynomonoecy maintenance in Asteraceae. We found that peripheral female flowers and petaloid rays were phylogenetically correlated. However, empirical evidence shows that a causal relationship between these traits is not clear.
Funding Information
  • Universidad Rey Juan Carlos (PPR-2004-53)
  • FPU
  • Ministerio de Educación y Ciencia Español
  • Vetenskapsrådet