Abstract
Low-energy ions which bombard a vapor-deposited film of low adatom mobility during growth mobilize surface atoms in the vicinity of the ion impact, causing a modification in the evolving microstructure. In a two-dimensional molecular-dynamics simulation where inert-gas ions strike a growing film of Lennard-Jones particles, it is demonstrated that ion bombardment during growth causes the filling of voids quenched in during vapor condensation and induces homoepitaxial growth. The dependence of film density and degree of homoepitaxial growth on the ion-to-vapor arrival rate ratio and ion energy is studied in detail.