Proton N.M.R. studies of chemical and diffusive exchange in carbohydrate systems

Abstract
A computer-simulated stochastic model is developed capable of predicting the combined effects of chemical and diffusive exchange on the transverse relaxation of spin-1/2 nuclei in a heterogeneous system. Comparison is first made with previous analytical theories for the special case of two site chemical exchange in a homogeneous system and the experimental data on several homogeneous aqueous carbohydrate systems are analysed. Results show that transverse water proton relaxation in these systems is dominated by proton exchange between water and carbohydrate hydroxyl groups. Analysis of model heterogeneous carbohydrate systems shows that in addition to chemical exchange, diffusion coefficients, particle morphology and local magnetic field gradients all have a role to play in determining the proton relaxation behaviour.