Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

Abstract
Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.
Funding Information
  • National Research Foundation of Korea (2013R1A1A1004778)
  • Samsung Display Company
  • National Research Foundation of Korea (2012M3A7B4049801)

This publication has 26 references indexed in Scilit: