A Self-Directed Method for Cell-Type Identification and Separation of Gene Expression Microarrays

Abstract
Gene expression analysis is generally performed on heterogeneous tissue samples consisting of multiple cell types. Current methods developed to separate heterogeneous gene expression rely on prior knowledge of the cell-type composition and/or signatures - these are not available in most public datasets. We present a novel method to identify the cell-type composition, signatures and proportions per sample without need for a-priori information. The method was successfully tested on controlled and semi-controlled datasets and performed as accurately as current methods that do require additional information. As such, this method enables the analysis of cell-type specific gene expression using existing large pools of publically available microarray datasets. Gene expression microarrays are widely used to uncover biological insights. Most microarray experiments profile whole tissues containing mixtures of multiple cell-types. As such, gene expression differences between samples may be due to different cellular compositions or biological differences, highly limiting the conclusions derived from the analysis. All current approaches to computationally separate the heterogeneous gene expression to individual cell-types require that the identity, relative amount of the cell-types in the tissue or their individual gene expression are known. Publically available microarray-based datasets, which include thousands of patient samples, do not usually measure this information, rendering existing separation methods unusable. We developed a novel approach to estimate the number of cell-types, identities, individual gene expression and relative proportions in heterogeneous tissues with no a-priori information except for an initial estimate of the cell-types in the tissue analyzed and general reference signatures of these cell-types that may be easily obtained from public databases. We successfully applied our method to microarray datasets, yielding highly accurate estimations, which often exceed the performance of separation methods that require prior information. Thus, our method can be accurately applied to any heterogeneous dataset, where re-examination and analysis of the individual cell-types in the heterogeneous tissue can aid in discovering new aspects regarding these diseases.