Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon

Abstract
The detailed structure of porous Si (PS) layers formed in p-type wafers with resistivities 0.01-25 Omega cm has been investigated using reflectance, transmission, ellipsometry and photoluminescence techniques. Marked differences were observed in the optical properties of PS formed in degenerate or non-degenerate Si and these results are correlated with the results of other techniques. The optical techniques together with effective medium modelling have been shown to be useful non-destructive methods for either assessment of PS density or detection of unsuspected phases. The degenerate PS layers consistently showed good retention of the single-crystal characteristics of the starting wafer, only c-Si and voids being detected. For these samples, good agreement was obtained between optical and gravimetric densities. However, the non-degenerate PS had much greater variability, with greater loss of crystallinity and significant incorporation of oxygen, due to partial oxidation having occurred on or immediately after anodisation. Oxide fractions have been determined both optically and gravimetrically, with up to 50% oxide being detected in some samples. Non-degenerate PS samples with high oxygen concentrations appeared to be in the form of a chemical mixture, SiOx, from interpretation of the optical constants. Photoluminescence measurements together with the other techniques indicated a complex mixture of phases in the latter samples-voids, alpha -Si:O (and/or alpha -Si:H), an unknown amorphous phase and silicon oxide. This complex structure probably contributes to the observed instability of thick non-degenerate PS layers when heated in UHV as part of the cleaning procedure prior to epitaxial growth, all degenerate samples being able to withstand heat treatment.