Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy

Abstract
Triboelectric nanogenerator (TENG) is a newly invented technology that is effective using conventional organic materials with functionalized surfaces for converting mechanical energy into electricity, which is light weight, cost‐effective and easy scalable. Here, we present the first systematic analysis and comparison of EMIG and TENG from their working mechanisms, governing equations and output characteristics, aiming at establishing complementary applications of the two technologies for harvesting various mechanical energies. The equivalent transformation and conjunction operations of the two power sources for the external circuit are also explored, which provide appropriate evidences that the TENG can be considered as a current source with a large internal resistance, while the EMIG is equivalent to a voltage source with a small internal resistance. The theoretical comparison and experimental validations presented in this paper establish the basis of using the TENG as a new energy technology that could be parallel or possibly equivalently important as the EMIG for general power application at large‐scale. It opens a field of organic nanogenerator for chemists and materials scientists who can be first time using conventional organic materials for converting mechanical energy into electricity at a high efficiency.