Embryology of the Neural Crest: Its Inductive Role in the Neurocutaneous Syndromes

Abstract
Our current purpose is to evaluate the applicability of dynamic statistical parametric mapping, a novel method for localizing epileptiform activity recorded with magnetoencephalography in patients with epilepsy. We report four pediatric patients with focal epilepsies. Magnetoencephalographic data were collected with a 306-channel whole-head helmet-shaped sensor array. We calculated equivalent current dipoles and dynamic statistical parametric mapping movies of the interictal epileptiform discharges that were based in the minimum-L2 norm estimate, minimizing the square sum of the dipole element amplitudes. The dynamic statistical parametric mapping analysis of interictal epileptiform discharges can demonstrate the rapid change and propagation of interical epileptiform discharges. According to these findings, specific epileptogenic lesion—focal cortical dysplasia could be found and patients could be operated on successfully. The presurgical analysis of interictal epileptiform discharges using dynamic statistical parametric mapping seems to be promising in patients with a possible underlying focal cortical dysplasia and might help to guide the placement of invasive electrodes. (J Child Neurol 2005;20:363—369).