Making and Breaking Covalent Bonds across the Magnetic Transition in the Giant Magnetocaloric MaterialGd5(Si2Ge2)

Abstract
A temperature-dependent, single crystal x-ray diffraction study of the giant magnetocaloric material, Gd5(Si2Ge2), across its Curie temperature (276 K) reveals that the simultaneous orthorhombic to monoclinic transition occurs by a shear mechanism in which the (Si,Ge)(Si,Ge) dimers that are richer in Ge increase their distances by 0.859(3) Å and lead to twinning. The structural transition changes the electronic structure, and provides an atomic-level model for the change in magnetic behavior with temperature in the Gd5(SixGe1x)4.