Abstract
Time-dependent density functional theory (TDDFT) is employed to study the interaction of a Ne atom with short and strong 800 nm laser pulses. In the intensity regime covered (1014–1016 W/cm2) up to triply ionized Ne is observed. Good quantitative agreement with the experimental Ne+ ion-yield (and the Ne2+-yield near saturation) is obtained. Nonsequential ionization (NSI) leads to a strong increase of the probability for double and triple ionization when compared to a single active electron (SAE)-approach. A NSI-“knee” is observed but the agreement with its experimental counterpart is not satisfactory.