Measurement-Based Modeling and Worst-Case Estimation of Crosstalk Inside an Aircraft Cable Connector

Abstract
Crosstalk within cable bundles can degrade system performance. In aircraft systems that use shielded twisted pairs, the crosstalk occurs primarily in the connector where individual signal wires are not shielded or twisted. In many cases, the parameters which determine crosstalk within the connector are unknown because the connector is closed and wires cannot be easily accessed. Expanding on prior research [14] , a methodology for measuring coupling parameters and modeling crosstalk within aircraft cable connectors at low frequencies (<400 MHz) was developed. The values of mutual inductance and capacitance were extracted from measurements made with a vector network analyzer (VNA). The characteristics of the individual wires were extracted from VNA-measured TDR response. The accuracy of the model was evaluated through comparison of simulated and measured results. Additionally, a closed-form solution was developed to estimate the worst-case envelope of the differential crosstalk. The calculated results match the measured peak values well. This worst-case crosstalk estimate allows effective evaluation of the impact of crosstalk within different connectors. The developed method can be effective for analyzing complex aircraft cable assemblies and connectors without requiring extensive knowledge of the assembly procedure.
Funding Information
  • National Science Foundation (IIP-1440110)

This publication has 16 references indexed in Scilit: