Landings at Logan Airport: Describing and Increasing Airport Capacity

Abstract
To understand how greatly new computer-based Decision Support Systems can benefit air traffic control, we study air traffic delays for landing aircraft at Boston. First, we develop an empirical model for present day Landing Time Intervals (LTIs) between aircraft in terms of two factors that significantly affect them: the landing runway configuration and the weight-class categories of the aircraft. Next, we develop three increasingly rich models of Boston's terminal airspace and apply, on airflow data, sequencing algorithms meant to expedite the landing of incoming aircraft. Comparing sequences suggested by the algorithms to those now used by controllers, we estimate that better sequencing can reduce delays by 30% in some instances. However, such improvements must be balanced against the effects such algorithms would have on workloads and other aspects of the air traffic control environment.