Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C

Abstract
The diffuse dielectric anomaly by the dielectric relaxation found at the high-temperature region of 400–700 °C was investigated in perovskite-type ferroelectric oxides such as BaTiO3, (Pb,La)TiO3, and (Pb,La)(Zr,Ti)O3 ceramics. We observed that the diffuse dielectric anomaly in perovskite oxides was strongly affected by oxygen-related processing parameters. We have modified the Debye relaxation equation by introducing the mobile dipole of the thermal motion of oxygen vacancies in order to explain the temperature-dependent behavior of the diffuse dielectric anomaly. A relationship between the dielectric polarization/relaxation and the electrical conduction by the thermal motion of oxygen vacancies was microscopically suggested to explain the origin of the diffuse dielectric anomaly found at 400–700 °C in perovskite-type ferroelectric oxides.