Induction of IL-33 expression and activity in central nervous system glia

Abstract
IL-33 is a novel member of the IL-1 cytokine family and a potent inducer of type 2 immunity, as mast cells and Th2 CD4+ T cells respond to IL-33 with the induction of type 2 cytokines such as IL-13. IL-33 mRNA levels are extremely high in the CNS, and CNS glia possess both subunits of the IL-33R, yet whether IL-33 is produced by and affects CNS glia has not been studied. Here, we demonstrate that pathogen-associated molecular patterns (PAMPs) significantly increase IL-33 mRNA and protein expression in CNS glia. Interestingly, IL-33 was localized to the nucleus of astrocytes. Further, CNS glial and astrocyte-enriched cultures treated with a PAMP followed by an ATP pulse had significantly higher levels of supernatant IL-1β and IL-33 than cultures receiving any single treatment (PAMP or ATP). Supernatants from PAMP + ATP-treated glia induced the secretion of IL-6, IL-13, and MCP-1 from the MC/9 mast cell line in a manner similar to exogenous recombinant IL-33. Further, IL-33 levels and activity were increased in the brains of mice infected with the neurotropic virus Theiler’s murine encephalomyelitis virus. IL-33 also had direct effects on CNS glia, as IL-33 induced various innate immune effectors in CNS glia, and this induction was greatly amplified by IL-33-stimulated mast cells. In conclusion, these results implicate IL-33-producing astrocytes as a potentially critical regulator of innate immune responses in the CNS.
Funding Information
  • National Multiple Sclerosis Society (RG2569C5)
  • National Institutes of Health (NS041593)

This publication has 64 references indexed in Scilit: