Slow/cardiac sarcoplasmic reticulum Ca2+‐ATPase and phospholamban mRNAs are expressed in chronically stimulated rabbit fast‐twitch muscle

Abstract
Fast-twitch extensor digitorum longus muscles of the rabbit were subjected to chronic low-frequency stimulation during different time periods. Changes in the relative amounts of mRNAs encoding fast and slow/cardiac Ca2+-ATPase isoforms were assessed through the use of an RNase-protection assay. Stimulation-induced increases in slow/cardiac Ca2+-ATPase and phospholamban mRNAs were quantified by mRNA hybridization. Prolonged stimulation resulted in an exchange of the fast with the slow/cardiac Ca2+-ATPase isoform mRNAs. The exchange was complete after 72 d of stimulation as compared with normal slow-twitch soleus muscle. The tissue content of phospholamban mRNA reached levels similar to that found in normal slow-twitch soleus muscle by the same time. The conversion of the sarcoplasmic reticulum coincided with the fast-to-slow troponin C isoform transition, previously investigated in the same muscles.