Cloning and characterization of SRP1, a suppressor of temperature-sensitive RNA polymerase I mutations, in Saccharomyces cerevisiae.

Abstract
The SRP1-1 mutation is an allele-specific dominant suppressor of temperature-sensitive mutations in the zinc-binding domain of the A190 subunit of Saccharomyces cerevisiae RNA polymerase I (Pol I). We found that it also suppresses temperature-sensitive mutations in the zinc-binding domain of the Pol I A135 subunit. This domain had been suggested to be in physical proximity to the A190 zinc-binding domain. We have cloned the SRP1 gene and determined its nucleotide sequence. The gene encodes a protein of 542 amino acids consisting of three domains: the central domain, which is composed of eight (degenerate) 42-amino-acid contiguous tandem repeats, and the surrounding N-terminal and C-terminal domains, both of which contain clusters of acidic and basic amino acids and are very hydrophilic. The mutational alteration (P219Q) responsible for the suppression was found to be in the central domain. Using antibody against the SRP1 protein, we have found that SRP1 is mainly localized at the periphery of the nucleus, apparently more concentrated in certain regions, as suggested by a punctate pattern in immunofluorescence microscopy. We suggest that SRP1 is a component of a larger macromolecular complex associated with the nuclear envelope and interacts with Pol I either directly or indirectly through other components in the structure containing SRP1.