Neuronal Damage and Plasticity Identified by Microtubule-Associated Protein 2, Growth-Associated Protein 43, and Cyclin D1 Immunoreactivity After Focal Cerebral Ischemia in Rats

Abstract
Background and Purpose —An objective of therapeutic intervention after cerebral ischemia is to promote improved functional outcome. Improved outcome may be associated with a reduction of the volume of cerebral infarction and the promotion of cerebral plasticity. In the developing brain, neuronal growth is concomitant with expression of particular proteins, including microtubule-associated protein 2 (MAP-2), growth-associated protein 43 (GAP-43), and cyclin D1. In the present study we measured the expression of select proteins associated with neurite damage and plasticity (MAP-2 and GAP-43) as well as cell cycle (cyclin D1) after induction of focal cerebral ischemia in the rat. Methods —Brains from rats (n=28) subjected to 2 hours of middle cerebral artery occlusion and 6 hours, 12 hours, and 2, 7, 14, 21, and 28 days (n=4 per time point) of reperfusion and control sham-operated (n=3) and normal (n=2) rats were processed by immunohistochemistry with antibodies raised against MAP-2, GAP-43, and cyclin D1. Double staining of these proteins for cellular colocalization was also performed. Results —Loss of immunoreactivity of both MAP-2 and GAP-43 was observed in most damaged neurons in the ischemic core. In contrast, MAP-2, GAP-43, and cyclin D1 were selectively increased in morphologically intact or altered neurons localized to the ischemic core at an early stage (eg, 6 hours) of reperfusion and in the boundary zone to the ischemic core (penumbra) during longer reperfusion times. Conclusions —The selective expressions of the neuronal structural proteins (MAP-2 in dendrites and GAP-43 in axons) and the cyclin D1 cell cycle protein in neurons observed in the boundary zone to the ischemic core are suggestive of compensatory and repair mechanisms in ischemia-damaged neurons after transient focal cerebral ischemia.