URANS Calculations for Smooth Circular Cylinder Flow in a Wide Range of Reynolds Numbers: Solution Verification and Validation

Abstract
The flow around circular smooth fixed cylinder in a large range of Reynolds numbers is considered in this paper. In order to investigate this canonical case, we perform CFD calculations and apply verification & validation (V&V) procedures to draw conclusions regarding numerical error and, afterwards, assess the modeling errors and capabilities of this (U)RANS method to solve the problem. Eight Reynolds numbers between Re = 10 and Re=5×105 will be presented with, at least, four geometrically similar grids and five discretization in time for each case (when unsteady), together with strict control of iterative and round-off errors, allowing a consistent verification analysis with uncertainty estimation. Two-dimensional RANS, steady or unsteady, laminar or turbulent calculations are performed. The original 1994 k-ω SST turbulence model by Menter is used to model turbulence. The validation procedure is performed by comparing the numerical results with an extensive set of experimental results compiled from the literature.