A new optimal reactive power flow model in rectangular form and its solution by predictor corrector primal dual interior point method

Abstract
A new optimal reactive power flow (ORPF) model in rectangular form is proposed in this paper. In this model, the load tap changing (LTC) transformer branch is represented by an ideal transformer and its series impedance with a dummy node located between them. The voltages of the two sides of the ideal transformer are then used to replace the turn ratio of the LTC so that the ORPF model becomes quadratic. The Hessian matrices in this model are constants and need to be calculated only once in the entire optimal process, which speed up the calculation greatly. The solution of the ORPF problem by the predictor corrector primal dual interior point method is described in this paper. Two separate prototypes for the new and the conventional methods are developed in MATLAB in order to compare the performances. The results obtained from the implemented seven test systems ranging from 14 to 1338 buses indicate that the proposed method achieves a superior performance than the conventional rectangular coordinate-based ORPF.