A Combination of Tea (Camellia senensis) Catechins Is Required for Optimal Inhibition of Induced CYP1A Expression by Green Tea Extract

Abstract
It was previously demonstrated that the commercial green tea extract Polyphenon 100 (P100), and to a lesser extent (-)-epigallocatechin-3-gallate (EGCG), partially antagonizes 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced transcription of human CYP1A1 (Williams, S. N.; Shih, H.; Guenette, D. K.; Brackney, W.; Denison, M. S.; Pickwell, G. V.; Quattrochi, L. C. Chem.-Biol. Interact. 2000, 128, 211-229). Here, P100 is compared to a reconstituted mixture of the four major tea catechins (referred to as P100R) to determine whether inhibition was due to additional polyphenols in the extract or from synergistic interactions among the tea catechins. It was found that cotreatment of cells with TCDD and either P100 or P100R inhibited TCDD-induced CYP1A promoter-driven luciferase reporter activity (HepG2 cells) and CYP1A expression (HepG2 and primary human hepatocytes), similarly. These results indicate that modulation of human CYP1A expression by P100 can be attributed entirely to the combination of the four tea catechins. These findings may be important in the evaluation of future chemoprevention strategies using green tea and single catechin agents.