Modulation of passive force in single skeletal muscle fibres

Abstract
In this study, we investigated the effects of activation and stretch on the passive force–sarcomere length relationship in skeletal muscle. Single fibres from the lumbrical muscle of frogs were placed at varying sarcomere lengths on the descending limb of the force–sarcomere length relationship, and tetanic contractions, active stretches and passive stretches (amplitudes ofca10% of fibre length at a speed of 40% fibre length/s) were performed. The passive forces following stretch of an activated fibre were higher than the forces measured after isometric contractions or after stretches of a passive fibre at the corresponding sarcomere length. This effect was more pronounced at increased sarcomere lengths, and the passive force–sarcomere length relationship following active stretch was shifted upwards on the force axis compared with the corresponding relationship obtained following isometric contractions or passive stretches. These results provide strong evidence for an increase in passive force that is mediated by a length-dependent combination of stretch and activation, while activation or stretch alone does not produce this effect. Based on these results and recently published findings of the effects of Ca2+on titin stiffness, we propose that the observed increase in passive force is caused by the molecular spring titin.