Estimates of the Energy of Intramolecular Hydrogen Bonds

Abstract
A method for the estimation of the energy of intramolecular hydrogen bonds in conjugated systems existing in a variety of conformations is presented. The method is applied to determine the intramolecular hydrogen bond energy in 3-aminopropenal and 3-aminopropenthial. According to the proposed estimation scheme, the intramolecular H-bond energies are found to be of the order of 5−7 kcal/mol. These results are compared with those obtained by using other estimation schemes as well as with the recent results by other authors. Also, the H-bond energies in dimers and trimers of the two molecules are calculated and compared with the corresponding data for internally hydrogen-bonded monomers. This comparison shows that the bond equalization effect is primarily due to proton donor−proton acceptor proximity. In comparison with intermolecular hydrogen bonds, the rigidity of the chelate skeleton enhances this proximity effect. The same effect can be seen in systems with intermolecular hydrogen bonds, although its magnitude is diminished because of the absence of additional forces which pull the proton donor and proton acceptor groups toward each other. No specific resonance-assisted origin of the intramolecular hydrogen bond energy seems to be needed to elucidate the energetics of these bonds.

This publication has 25 references indexed in Scilit: