Enhancement of thermal conductivity upon application of magnetic field to Fe3O4 nanofluids

Abstract
Enhancement of thermal conductivity of fluids upon addition of nanoparticles has been previously observed. In this study, Fe3O4 magnetite particles were used and thermal conductivity enhancements both in water and in heptane with increasing volume fraction have been shown. Upon measuringthermal conductivity under externally applied magnetic field, it has been shown experimentally that thermal conductivity can be further increased even at low concentrations and low magnetic field strengths in both fluids. Theoretical calculations are presented to support the effect of magnetic field on the thermal conductivity enhancement. This enhancement is attributed to the thermomagnetic convection which due to a temperature gradient, results in a non-uniform magnetic body force resulting in more efficient thermal conductance.