Calibration and Characterisation of Imaging Spectrographs

Abstract
Spectrograph-based spectral imaging systems provide images with a large number of contiguous spectral channels per pixel. This paper describes the calibration and characterisation of such systems. The relation between pixel position and measured wavelength has been determined using three different wavelength calibration sources. Results indicate that for spectral calibration, a source with very narrow peaks, such as a HgAr source, is preferred to narrow band filters. A third-order polynomial model gives an appropriate fit for the pixel to wavelength mapping. The signal-to-noise ratio (SNR) is determined per wavelength. In the blue part of the spectrum, the SNR is lower than in the green and red part. This is due to a decreased quantum efficiency of the sensor, a smaller transmission coefficient of the spectrograph, as well as low output power of the illuminant. Increasing the amount of blue light, using an additional fluorescent tube with a special coating considerably increases the SNR. Furthermore, the spatial and spectral resolution of the system has been determined in relation to the wavelength. These can be used to choose appropriate binning factors to decrease the image size without losing information. In our case this could reduce the image size by a factor of 60 or more.

This publication has 8 references indexed in Scilit: