Rapid Diagnostic Tests for Malaria at Sites of Varying Transmission Intensity in Uganda

Abstract
Background. In Africa, fever is often treated presumptively as malaria, resulting in misdiagnosis and the overuse of antimalarial drugs. Rapid diagnostic tests (RDTs) for malaria may allow improved fever management. Methods. We compared RDTs based on histidine-rich protein 2 (HRP2) and RDTs based on Plasmodium lactate dehydrogenase (pLDH) with expert microscopy and PCR-corrected microscopy for 7000 patients at sites of varying malaria transmission intensity across Uganda. Results. When all sites were considered, the sensitivity of the HRP2-based test was 97% when compared with microscopy and 98% when corrected by PCR; the sensitivity of the pLDH-based test was 88% when compared with microscopy and 77% when corrected by PCR. The specificity of the HRP2-based test was 71% when compared with microscopy and 88% when corrected by PCR; the specificity of the pLDH-based test was 92% when compared with microscopy and >98% when corrected by PCR. Based on Plasmodium falciparum PCR-corrected microscopy, the positive predictive value (PPV) of the HRP2-based test was high (93%) at all but the site with the lowest transmission rate; the pLDH-based test and expert microscopy offered excellent PPVs (98%) for all sites. The negative predictive value (NPV) of the HRP2-based test was consistently high (>97%); in contrast, the NPV for the pLDH-based test dropped significantly (from 98% to 66%) as transmission intensity increased, and the NPV for expert microscopy decreased significantly (99% to 54%) because of increasing failure to detect subpatent parasitemia. Conclusions. Based on the high PPV and NPV, HRP2-based RDTs are likely to be the best diagnostic choice for areas with medium-to-high malaria transmission rates in Africa.