Abstract
Sorption experiments with apolar organic compounds (naphthalene and 1,2-dichorobenzene) were conducted to evaluate sorption mechanisms in soil organic matter (SOM). All isotherms were nonlinear and competition between solutes was observed. Nonlinearity and competition increased in an order of peat humic acid (HA) < peat < peat humin. Isotherms of Al-saturated HA (Al-HA) were more nonlinear than untreated HA and Ca-HA, and sorption/desorption hysteresis occurred only in Al-HA. These results are not consistent with partitioning theory or the presence of high-surface-area carbonaceous materials (HSACM) in soil. But the results are consistent with dual-mode sorption, where SOM is postulated to have both condensed (rigid) and expanded (flexible) domains, and adsorption takes place only in the condensed domains and partitioning in both domains. These non-ideal sorptive behaviors need to be incorporated into predictive models to more accurately describe the fate and transport of organics in soil and subsurface environments. Key words: sorption, organic compounds, organic matter, dual-mode, partition, mechanisms