Weighted least-squares reconstruction methods for positron emission tomography

Abstract
We present unpenalized and penalized weighted least-squares (WLS) reconstruction methods for positron emission tomography (PET), where the weights are based on the covariance of a model error and depend on the unknown parameters. The penalty function for the latter method is chosen so that certain a priori information is incorporated. The algorithms used to minimize the WLS objective functions guarantee nonnegative estimates and, experimentally, they converged faster than the maximum likelihood expectation-maximization (ML-EM) algorithm and produced images that had significantly better resolution and contrast. Although simulations suggest that the proposed algorithms are globally convergent, a proof of convergence has not yet been found. Nevertheless, we are able to show that the unpenalized method produces estimates that decrease the objective function monotonically with increasing iterations.