Local Expression of Platelet-Activating Factor-Acetylhydrolase Reduces Accumulation of Oxidized Lipoproteins and Inhibits Inflammation, Shear Stress-Induced Thrombosis, and Neointima Formation in Balloon-Injured Carotid Arteries in Nonhyperlipidemic Rabbits

Abstract
Background— Platelet-activating factor (PAF) and PAF-like phospholipids are inactivated by PAF-acetylhydrolase (PAF-AH). Using nonhyperlipidemic animals, we tested whether local expression of PAF-AH into injured arteries might induce antithrombotic and antiinflammatory effects. Method and Results— Balloon-injured rabbit carotid arteries were infected at the time of injury with an adenovirus expressing either human plasma PAF-AH (AdPAF-AH) or bacterial β-galactosidase (AdLacZ) or infused with saline. Seven days later, shear stress-induced thrombosis was observed in all AdLacZ-infected and saline-infused arteries (controls) but eliminated in AdPAF-AH-treated contralateral arteries, even in the presence of epinephrine or an inhibitor of NO production. Injury-induced expression of tissue factor was also significantly suppressed. In AdPAF-AH-treated arteries compared with controls, the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 and macrophage infiltration were decreased by 66%, 66%, and 71%, respectively ( P P Conclusions— Our results show for the first time that OxLDL accumulates in arteries in nonhyperlipidemic animals within 1 week after injury and that local expression of PAF-AH reduces this accumulation and exerts antiinflammatory, antithrombotic, and antiproliferative effects without changing the plasma levels of PAF-AH activity or titers of autoantibodies to OxLDL.

This publication has 16 references indexed in Scilit: