Pyridine-2,6-bis(thiocarboxylic acid) Produced by Pseudomonas stutzeri KC Reduces Chromium(VI) and Precipitates Mercury, Cadmium, Lead and Arsenic

Abstract
Interactions of the Pseudomonas stutzeri KC siderophore pyridine-2,6-bis(thiocarboxylic acid) (pdtc) with chromium(VI), mercury(II), cadmium(II), lead(II), and arsenic(III) are described. Pdtc was found to reduce Cr(VI) to Cr(III) in both bacterial cultures and in abiotic reactions with chemically synthesized pdtc. Cr(III) subsequently formed complexes with pdtc and pdtc hydrolysis products, and their presence was confirmed using electrospray ionization-mass spectrometry (ESI-MS). Cr(III):pdtc complexes were found to slowly release Cr(III) as chromium sulfide and possibly Cr(III) oxides. Pdtc also formed poorly soluble complexes with Hg, Cd, Pb, and As(III). Hydrolysis of those complexes led to the formation of their respective metal sulfides as confirmed by energy dispersive X-ray spectroscopy (EDS) elemental analysis. The pdtc-producing strain P. stutzeri KC showed higher tolerance to most of these metals as compared to a pdtc-negative mutant. A novel role of pdtc is postulated as its involvement in providing an extracellular pool of thiols that are used for redox processes in detoxification of the bacterial extracellular environment. These redox processes can be mediated by transition metal:pdtc complexes.

This publication has 43 references indexed in Scilit: