Fast Quantification of Chlorinated Paraffins in Environmental Samples by Direct Injection High-Resolution Mass Spectrometry with Pattern Deconvolution

Abstract
Chlorinated paraffins (CPs) are high production volume chemicals, but data about their environmental fate are scarce. CP mixtures composed of thousands of isomers represent a major challenge for quantification at low levels in environmental samples. Here, we present a novel analytical method for analysis of short-chain, medium-chain, and long-chain CPs in a single injection, that also yields information about congener group pattern. Our detection method is based on direct injection into an atmospheric pressure chemical ionization source operated in negative ion mode under chlorine-enhanced conditions, followed by quadrupole time-of-flight high-resolution mass spectrometry (APCI-qTOF-HRMS) operated in full-scan mode. A mathematical algorithm is applied to deconvolute the CP patterns in the analyzed samples into a linear combination of patterns of technical CP mixtures and to quantify CPs using technical mixtures as external calibration standards. For CP mixtures with known composition, the new method provided concentrations that were within a factor of 1.2 of the target value. Accuracies for CPs spiked to sediment and fish extracts were between 91% and 123%. Concentrations determined in unspiked field samples were within a factor of 5 for short-chain CPs and a factor of 16 for medium-chain CPs of results obtained with an independent method based on gas chromatography/electron capture negative ionization high-resolution mass spectrometry (GC/ECNI-HRMS). The presented APCI-qTOF-HRMS pattern deconvolution method is an interesting alternative for CP analysis in environmental samples. It is particularly sensitive for medium- and long-chain CPs and has the advantage of being extremely fast (instrumental analysis time, less than 1 min).

This publication has 28 references indexed in Scilit: