Acceleration of the Glycolytic Flux by Steroid Receptor Coactivator-2 Is Essential for Endometrial Decidualization

Abstract
Early embryo miscarriage is linked to inadequate endometrial decidualization, a cellular transformation process that enables deep blastocyst invasion into the maternal compartment. Although much of the cellular events that underpin endometrial stromal cell (ESC) decidualization are well recognized, the individual gene(s) and molecular pathways that drive the initiation and progression of this process remain elusive. Using a genetic mouse model and a primary human ESC culture model, we demonstrate that steroid receptor coactivator-2 (SRC-2) is indispensable for rapid steroid hormone-dependent proliferation of ESCs, a critical cell-division step which precedes ESC terminal differentiation into decidual cells. We reveal that SRC-2 is required for increasing the glycolytic flux in human ESCs, which enables rapid proliferation to occur during the early stages of the decidualization program. Specifically, SRC-2 increases the glycolytic flux through induction of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3), a major rate-limiting glycolytic enzyme. Similarly, acute treatment of mice with a small molecule inhibitor of PFKFB3 significantly suppressed the ability of these animals to exhibit an endometrial decidual response. Together, these data strongly support a conserved mechanism of action by which SRC-2 accelerates the glycolytic flux through PFKFB3 induction to provide the necessary bioenergy and biomass to meet the demands of a high proliferation rate observed in ESCs prior to their differentiation into decidual cells. Because deregulation of endometrial SRC-2 expression has been associated with common gynecological disorders of reproductive-age women, this signaling pathway, involving SRC-2 and PFKFB3, promises to offer new clinical approaches in the diagnosis and/or treatment of a non-receptive uterus in patients presenting idiopathic infertility, recurrent early pregnancy loss, or increased time to pregnancy. Failure of an embryo to correctly implant into the endometrium is a common cause of pregnancy failure or early embryo miscarriage. Although advances in our understanding of oocyte and embryo development have significantly increased pregnancy success rates, these rates remain unacceptably low due in part to an endometrium that is unreceptive to embryo implantation. Using experimental mouse genetics and a primary human cell culture model, we show here that the development of a receptive endometrium requires steroid receptor coactivator-2, a factor which modulates the response of an endometrial cell to the pregnancy hormone, progesterone. Specifically, we show that SRC-2 increases progesterone-dependent glycolysis in the endometrial cell to provide energy and biomolecules for the next round of cell division. For an endometrium to be receptive to embryo implantation, specific endometrial cells (termed stromal cells) need to divide and numerically increase just prior to development of the receptive state. Therefore, SRC-2 is critical for the metabolic reprogramming of the endometrium to a receptive state, which provides the pretext for considering this factor and its metabolic targets in the design of future clinical approaches to diagnose and therapeutically treat those women at a high risk for early pregnancy loss.