The Arabidopsis C3H2C3-Type RING E3 Ubiquitin Ligase AtAIRP1 Is a Positive Regulator of an Abscisic Acid-Dependent Response to Drought Stress

Abstract
Ubiquitination is a eukaryotic posttranslational protein modification that is mediated by the cascade of E1, E2, and E3 ubiquitin (Ub) ligases and is involved in regulating numerous cellular functions. In this study, we obtained 100 different Arabidopsis (Arabidopsis thaliana) T-DNA insertion mutant plants in which RING E3 Ub ligase genes were suppressed and monitored their phenotypes in the presence of exogenous abscisic acid (ABA), a plant stress hormone. One of these loss-of-function mutants displayed ABA-insensitive phenotypes at the germination stage and was named atairp1 (for Arabidopsis ABA-insensitive RING protein 1). AtAIRP1 encodes a cytosolic protein containing a single C3H2C3-type RING motif with in vitro E3 Ub ligase activity. AtAIRP1 was significantly induced by ABA and drought stress. In contrast to atairp1 mutant plants, AtAIRP1-overexpressing transgenic plants (35S:AtAIRP1-sGFP) were hypersensitive to exogenous ABA in terms of radicle emergence, cotyledon development, root elongation, and stomatal closure. Ectopic expression of AtAIRP1-sGFP in atairp1 effectively rescued the loss-of-function ABA-insensitive phenotype. Both 35S:AtAIRP1-sGFP and atairp1/35S:AtAIRP1-sGFP plants accumulated higher amounts of hydrogen peroxide in response to exogenous ABA than did wild-type and atairp1 mutant plants. AtAIRP1 overexpressors were markedly tolerant to severe drought stress, as opposed to atairp1, which was highly susceptible. The levels of drought stress-related genes and basic leucine zipper transcription factor genes were up-regulated in the 35S:AtAIRP1-sGFP lines relative to wild-type and atairp1 mutant plants in response to ABA. Overall, these results suggest that AtAIRP1, a C3H2C3-type RING E3 Ub ligase, is a positive regulator in the Arabidopsis ABA-dependent drought response.

This publication has 52 references indexed in Scilit: