Ethanol-induced HO-1 and NQO1 Are Differentially Regulated by HIF-1α and Nrf2 to Attenuate Inflammatory Cytokine Expression

Abstract
Oxidative stress plays an important role in alcohol-induced inflammation and liver injury. Relatively less is known about how Kupffer cells respond to oxidative stress-induced expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1) to blunt inflammation and liver injury. We showed that Kupffer cells from ethanol-fed rats and ethanol-treated rat Kupffer cells and THP-1 cells displayed increased mRNA expression of HO-1, NQO1, and hypoxia-inducible factor-1α (HIF-1α). Our studies showed that silencing with HIF-1α and JNK-1 siRNAs attenuated ethanol-mediated mRNA expression of HO-1, but not NQO1, whereas Nrf2 siRNA attenuated the mRNA expression of both HO-1 and NQO1. Additionally, JunD but not JunB formed an activator protein-1 (AP-1) oligomeric complex to augment HO-1 promoter activity. Ethanol-induced HO-1 transcription involved antioxidant response elements, hypoxia-response elements, and an AP-1 binding motif in its promoter, as demonstrated by mutation analysis of the promoter, EMSA, and ChIP. Furthermore, livers of ethanol-fed c-Junfl/fl mice showed reduced levels of mRNA for HO-1 but not of NQO1 compared with ethanol-fed control rats, supporting the role of c-Jun or the AP-1 transcriptional complex in ethanol-induced HO-1 expression. Additionally, attenuation of HO-1 levels in ethanol-fed c-Junfl/fl mice led to increased proinflammatory cytokine expression in the liver. These results for the first time show that ethanol regulates HO-1 and NQO1 transcription by different signaling pathways. Additionally, up-regulation of HO-1 protects the liver from excessive formation of inflammatory cytokines. These studies provide novel therapeutic targets to ameliorate alcohol induced inflammation and liver injury.