Organophosphate Flame Retardants and Plasticizers in Aqueous Solution: pH-Dependent Hydrolysis, Kinetics, and Pathways

Abstract
Despite the growing ubiquity of organophosphate (OP) triesters as environmental contaminants, parameters affecting their aquatic chemical stabilities are currently unknown. The present study examined the pH-dependent (7, 9, 11, or 13) hydrolysis of 16 OP triesters in mixtures of 80 ng/mL for each OP triester over a period of 35 days at 20 °C. For the pH = 7, 9, and 11 solutions, 10 of the 16 OP triesters were stable and with no significant (p > 0.05) degradation. For the remaining 6 OP triesters, significant degradation occurred progressing from the pH = 7 to 11 solutions. At pH = 13, except for tributyl phosphate and tris(2-ethylhexyl) phosphate, 14 OP triesters were degraded with half-lives ranging from 0.0053 days (triphenyl phosphate) to 47 days (tripropyl phosphate). With increasingly basic pH the order of OP triester stability was group A (with alkyl moieties) > group B (chlorinated alkyl) > group C (aryl). Numerous OP diesters were identified depending on the pH level of the solution, whereas OP monoesters were not detectable. This is consistent with no significant (p > 0.05) depletion observed for 5 OP diesters in the same 4 solutions and over same 35 day period, suggesting OP diesters are end products of base-catalyzed hydrolysis of OP triesters. Our results demonstrated that pH-dependent hydrolysis of OP triesters does occur, and such instability would likely affect the fate of OP triesters in aqueous environments where the pH can be variable and basic.
Funding Information
  • Health Canada
  • Environment Canada
  • Natural Sciences and Engineering Research Council of Canada (189079)