Hydrogen and Oxygen Evolution on Boron‐Doped Diamond Electrodes

Abstract
The evolution of hydrogen and oxygen was studied on diamond electrodes containing approximately 1021 boron atom/cm3. Voltammetry showed a wide potential window [−1.25 to +2.3 V vs. standard hydrogen electrode (SHE)] without significant water decomposition. This window was much narrower for poor quality diamond films with appreciable sp2 content. A redox couple observed at +1.7 V indicates oxidation of the diamond surface prior to oxygen evolution. The extent of surface oxidation increased with sp2 content. Anodic polarization made the diamond surface hydrophilic; x‐ray photoelectron spectroscopy showed an increase in oxygen coverage and the presence of carbon‐oxygen bonds. The estimated capacitance of the interface ranged from 0.05 μF/cm2 for high quality diamond to 5 μF/cm2 for low quality diamond. Preliminary measurements of the exchange current densities for oxygen and hydrogen evolution indicated slow kinetics compared to metals or highly oriented pyrolytic graphite.