Molecular and phenotypic heterogeneity in mitochondrial trifunctional protein deficiency due to ?-subunit mutations

Abstract
The mitochondrial trifunctional protein (TFP) is a multienzyme complex of the fatty acid β-oxidation cycle. It is composed of four α-subunits (HADHA) harboring long-chain enoyl-CoA hydratase and long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD) and four β-subunits (HADHB) harboring long-chain 3-ketoacyl-CoA thiolase (LKAT). Mutations in either subunit can result in TFP deficiency with reduced activity of all three TFP enzymes. We characterize 15 patients from 13 families with β-subunit mutations by clinical, biochemical, and molecular features. Three clinical phenotypes are apparent: a severe neonatal presentation with cardiomyopathy, Reye-like symptoms, and early death (n=4); a hepatic form with recurrent hypoketotic hypoglycemia (n=2); and a milder later-onset neuromyopathic phenotype with episodic myoglobinuria (n=9). Maternal HELLP syndrome occurred in two mothers independently of the fetal phenotype. Mutational analysis revealed 16 different mutations, the majority being missense mutations (n=12). The predominance of missense mutations and the milder myopathic phenotype are consistent. Based upon homology to yeast thiolase that has been characterized structurally, the mutation localization within the protein correlates with the clinical phenotype. Outer loop mutations that are expected to alter protein stability less were only present in milder forms. The degree of reduction in thiolase antigen also correlated with the severity of clinical presentation. Although TFP deficiency is highly heterogeneous, there is genotype–phenotype correlation. Hum Mutat 21:598–607, 2003.

This publication has 28 references indexed in Scilit: