Controlling Emotional Expression: Behavioral and Neural Correlates of Nonimitative Emotional Responses

Abstract
Emotional facial expressions can engender similar expressions in others. However, adaptive social and motivational behavior can require individuals to suppress, conceal, or override prepotent imitative responses. We predicted, in line with a theory of “emotion contagion,” that when viewing a facial expression, expressing a different emotion would manifest as behavioral conflict and interference. We employed facial electromyography (EMG) and functional magnetic resonance imaging (fMRI) to investigate brain activity related to this emotion expression interference (EEI) effect, where the expressed response was either concordant or discordant with the observed emotion. The Simon task was included as a nonemotional comparison for the fMRI study. Facilitation and interference effects were observed in the latency of facial EMG responses. Neuroimaging revealed activation of distributed brain regions including anterior right inferior frontal gyrus (brain area [BA] 47), supplementary motor area (facial area), posterior superior temporal sulcus (STS), and right anterior insula during emotion expression–associated interference. In contrast, nonemotional response conflict (Simon task) engaged a distinct frontostriatal network. Individual differences in empathy and emotion regulatory tendency predicted the magnitude of EEI-evoked regional activity with BA 47 and STS. Our findings point to these regions as providing a putative neural substrate underpinning a crucial adaptive aspect of social/emotional behavior.