Abstract
An irreversible inhibitor of S-adenosyl-L-methionine decarboxylase (AdoMetDC), 5′-([(Z)-4-amino-2-butenyl]methylamino)-5′-deoxyadenosine (MDL 73811), was found to cure Trypanosoma brucei brucei and multidrug-resistant T. b. rhodesiense infections in mice [Bitonti, Byers, Bush, Casara, Bacchi, Clarkson, McCann & Sjoerdsma (1990) Antimicrob. Agents Chemother. 34, 1485-1490]. Doses of this drug which resulted in a rapid clearance of parasites from T. b. brucei-infected rats resulted in plasma levels of 50-60 microM-MDL 73811 and an intratrypanosomal MDL 73811 concentration of 1.9 mM within 10 min of administration [Byers, Bush, McCann & Bitonti (1991) Biochem. J. 274, 527-533[. Based on this finding we speculated that MDL 73811, which is an adenosine analogue, is a substrate for the trypanosome active purine transport system. We now report evidence that supports this hypothesis. MDL 73811 uptake by T. b. brucei in vitro was time- and temperature-dependent and was saturable over a time course in which MDL 73811 metabolism was undetectable, suggesting that MDL 73811 uptake is a transport-mediated phenomenon. Inhibition of MDL 73811 uptake by purine nucleosides is consistent with the drug being a substrate for the trypanosome purine transport system. The accumulation of MDL 73811 by cultured L1210 mouse leukaemia cells was significantly less than by trypanosomes exposed to the same pharmacologically relevant concentrations of MDL 73811. Given that the half-life of MDL 73811 in the plasma of rats and mice is approx. 10 min, it seems likely that the existence of a highly active parasite transport system for MDL 73811 is crucial for the sensitivity of trypanosomes towards MDL 73811 in vivo, and that the absence of active transport of MDL 73811 by the host's cells may play a role in the selectivity of this drug.