A digital model of trabecular bone

Abstract
A 3D μCT dataset of bovine bone was used to create a digital 3D model simulating trabecular bone. The model serves a dual purpose: It allows for standard quantitative histomorphometric analysis and it approximates the reality e.g. of high resolution CT in vivo datasets of trabecular bone. Thus the model can potentially be used as a reference to develop 2D and 3D structural analysis algorithms applicable in vivo while it simultaneously allows verification of the results of these algorithms by standard histomorphometry. The model can be used as a standard to evaluate the impact of image processing techniques and of restrictions of imaging systems on the quantitative analysis of structural parameters describing a trabecular network. The model can be used for a comparison of 2D and 3D structural analysis methods and for an analysis of decreasing spatial resolution. The effects of segmentation and filtration can be studied separately and grayscale analysis is possible. As examples standard 2D histomorphometry and the analysis of topological parameters like node number and trabecular network length were applied to the model. The influence of spatial resolution was investigated by decreasing the spatial resolution of the digital model. The bone surface area determined by 3D surface triangulation was only 4% smaller than the surface area determined from the traditional 2D bone histomorphometric parameter bone surface/tissue volume (BS/TV) when 2D results were averaged over all slices of the 3D volume. However, BS/TV showed large (10%) variations among slices within the volume. Both histomorphometric and topological parameters were heavily influenced by spatial resolution and image segmentation. Our initial experience with the digital model indicates a need to investigate bone microstructure based on volume data or to average the 2D results of many slices.